Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1102220190380020186
Kidney Research and Clinical Practice
2019 Volume.38 No. 2 p.186 ~ p.195
Renal tubular P-glycoprotein expression is reduced in plasma cell disorders
Heybeli Cihan

Oktan Mehmet Asi
Arda Hayri Ustun
Yildiz Serkan
Unlu Mehtat
Cavdar Caner
Sifil Aykut
Celik Ali
Sarioglu Sulen
Camsari Taner
Abstract
Background: P-glycoprotein (P-gp) transports many chemicals that vary greatly in their structure and function. It is normally expressed in renal proximal tubular cells. We hypothesized that P-gp expression influences light chain excretion. Therefore, we investigated whether renal tubular P-gp expression is altered in patients with plasma cell disorders.

Methods: We evaluated renal biopsy specimens from patients with plasma cell disorders (n = 16) and primary focal segmental glomerulosclerosis (the control group, n = 17). Biopsies were stained with an anti-P-gp antibody. Loss of P-gp expression was determined semi-quantitatively. Groups were compared for loss of P-gp expression, and clinical variables.

Results: P-gp expression loss was more severe in patients with plasma cell disorders than it was in those with glomerulonephritis (P = 0.021). In contrast, clinical and histological parameters including serum creatinine, level of urinary protein excretion, and interstitial fibrosis/tubular atrophy grade were not significantly different between the groups. P-gp expression loss increased with age in patients with plasma cell disorders (P = 0.071). This expression loss was not associated with serum creatinine, the level of urinary protein excretion or the interstitial fibrosis/tubular atrophy grade. There was no significant association between the severity of P-gp expression loss with the types and serum levels of light chains, isotypes and serum immunoglobulin levels.

Conclusion: Renal tubular P-gp expression is significantly down-regulated in patients with plasma cell disorders characterized by nephrotic range proteinuria. Additional studies are needed to determine whether reintroduction of renal tubular P-gp expression would mitigate the proximal tubular injury that is caused by free-light chains.
KEYWORD
Amyloidosis, Immunoglobulin light chains, Multipl myeloma, P-glycoprotein
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø